AUSBILDUNGS- UND BERATUNGSZENTRUM m e~ h
AB FUR INFORMATIKUNTERRICHT ZUFIC

Urs Hauser Juraj Hromkovi¢ Tobias Kohn Dennis Komm Giovanni Serafini

Programmieren mit Python

Schweizerische Eidgenossenschaft
Departement fiir Wirtschaft, Bildung und Forschung

Departementstagung, 15. Februar 2018

Programmierumgebung

Die vorliegenden Unterrichtsunterlagen wurden fiir die Programmierumgebung TigerJython
(http://jython.tobiaskohn.ch) erstellt und sind kostenlos auf http://www.abz.inf.
ethz.ch/maturitatsschulen/unterrichtsmaterialien/ verfiigbar.

Weiterfiihrende Literatur

Die Lehrwerksreihe ,Einfach Informatik® ermoglicht einen kompetenzorientierten und
Lehrplan-21-kompatiblen Unterricht im Bereich Informatik auf den Schulstufen 7-9. Sie
besteht aus drei Banden und ist imKlett-Verlag erhéltlich.

https://www.klett.ch/de/inentwicklung/einfach_informatik/index.php

einfach
INFORMATIK

einfach einfach
INFORMATIK - INFQRMATIK

Programmieren

Strategien entwickeln

Programmieren Daten darstellen, Strategien entwickeln
verschliisseln, komprimieren

Nutzungsrechte

Das ABZ stellt diese Lehrmaterialien zur Forderung des Unterrichts interessierten Lehr-
kraften oder Institutionen zur internen Nutzung kostenlos zur Verfiigung.

ABZ

Das Ausbildungs- und Beratungszentrum fiir Informatikunterricht der ETH Ziirich un-
terstiitzt Schulen und Lehrkréfte, die ihren Informatikunterricht entsprechend auf- oder
ausbauen moéchten, mit einem vielfdltigen Angebot. Es reicht von individueller Beratung
und Unterricht durch ETH-Professoren und das ABZ-Team direkt vor Ort in den Schulen
iiber Ausbildungs- und Weiterbildungskurse fiir Lehrkréafte bis zu Unterrichtsmaterialien.

www.abz.inf.ethz.ch

http://jython.tobiaskohn.ch
http://www.abz.inf.ethz.ch/maturitatsschulen/unterrichtsmaterialien/
http://www.abz.inf.ethz.ch/maturitatsschulen/unterrichtsmaterialien/
https://www.klett.ch/de/inentwicklung/einfach_informatik/index.php
www.abz.inf.ethz.ch

1 Steuerung der Schildkrote

Ein Computerbefehl ist eine Anweisung, die der Computer versteht und ausiiben
kann. Der Computer kennt eigentlich nur sehr wenige Befehle und alle komplizierten
Téatigkeiten, die wir vom Computer vollbracht haben wollen, miissen wir aus den einfachen
Computerbefehlen zusammensetzen.

Eine solche Folge von Computerbefehlen nennen wir ein Programm.

In diesem Kapitel lassen wir den Computer eine Schildkréte iiber den Bildschirm bewegen,
womit beispielsweise geometrische Figuren gezeichnet werden konnen.

— Aufgabe 1

Tippen Sie das folgende Programm ab und fithren Sie es aus, indem Sie auf das
Play-Symbol ,p“ driicken.

from gturtle import x
makeTurtle()

forward(100)
right(90)
forward(100)
right(90)
forward(100)
right(90)
forward(100)
right(90)

Chapeau! Sie haben die Schildkrote mit Hilfe der Befehle forward(100) und right(90)
ein Quadrat zeichnen lassen. Diese Instruktionen sind in einem fiir den Computer
verstandlichen ,,Worterbuch® gespeichert, das wir in jedem Programm zunéchst ,laden®
miissen:

from gturtle import x

Anschliessend muss die Schildkrote erstellt werden:

makeTurtle()

Wichtig

Beachten Sie das ,, () “ am Ende des Befehls; diese Klammern diirfen nicht weggelassen
werden. Innerhalb der Klammern werden wir spéter den Befehlen Werte, z. B. Zahlen,
iibergeben.

Strecken zeichnen

Mit forward(100) und back(100) bewegt sich die Schildkrote um 100 Schritte (Pixel
auf dem Bildschirm) vorwérts bzw. rickwérts und zeichnet dabei ihre Spur. Die Befehle
konnen mit fd(100) und bk(100) abgekiirzt werden. Sie konnen die Anzahl der Schritte
frei wéhlen.

.t
|}

Startposition forward(100) back(100)

Drehen

Mit dem Befehl right(x) (oder als Abkiirzung rt(x)) dreht sich die Schildkréte um x
Grad nach rechts.

. avasys

Startposition right(90) right(120) right(270)

Der Befehl left(x) bzw. 1t(x) kann gleichermassen fiir eine Links-Drehung um x Grad
verwendet werden.

Wichtig

Das Drehen nach links und rechts bezieht sich immer auf die aktuelle Ausrichtung
der Schildkrote, wie das folgende Beispiel mit dem Befehl right (90) zeigt.

Startposition right(90)

— Aufgabe 2

Erweitern Sie das folgende Programm so, dass das Bild rechts gezeichnet wird. Die
Schildkrote hat hier bereits den ersten Befehl forward(60) ausgefiihrt.

from gturtle import x

makeTurtle()

forward(60) 60
Start Ziel

= Aufgabe 3

a. Schreiben Sie ein Programm, das das Bild rechts

zeichnet.
b. Andern Sie das Programm so ab, dass es nur die 20
Befehle forward(50) und right(90) verwendet. 50
— Aufgabe 4
45°
/—

Schreiben Sie ein Programm, das den Stern rechts
zeichnet; dies kann im oder gegen den Uhrzeigersinn
passieren.

50

2 Programmablaufstrukturen

Wiederholungen mit repeat

Bislang waren die erstellten Programme sehr repetitiv; beispielsweise haben wir in Auf-
gabe 1 ein Quadrat mit Seitenldnge 100 gezeichnet, indem wir die Befehle forward(100)
und right(90) vier Mal wiederholt haben:

from gturtle import =x

makeTurtle()
forward(100)
right(90)
forward(100)
right(90)
forward(100)
right(90)
forward(100)
right(90)

Der Computer kann die Wiederholung solcher Befehle aber auch direkt iibernehmen,
ohne dass wir Sie mehrmals eintippen miissen.

Konkret verwenden wir in einem solchen Fall eine sogenannte repeat-Schleife, mit der
wir dem Computer sagen

,Wiederhole folgende Befehle 4 Mal*.

In der Sprache des Computers sieht dies wie folgt aus:

from gturtle import x
makeTurtle()
repeat 4:

forward(100)
right(90)

Direkt hinter repeat gibt eine Zahl (hier die 4) an, wie oft die folgenden Befehle ausgefiihrt
werden sollen. Anschliessend muss zwingend ein Doppelpunkt ,,:* folgen. Alle Befehle,
die wiederholt werden sollen, miissen gleichmassig eingeriickt werden. Driickt man
nach dem Doppelpunkt die [enter]-Taste, geschieht dies automatisch. Natiirlich kann man
hierzu auch die Tabulator-Taste verwenden.

— Aufgabe 5

Uberlegen Sie sich kurz, was das folgende Programm zeichnet. Kiirzen Sie es ansch-
liessend mit Hilfe von repeat ab.

from gturtle import x
makeTurtle()

forward(50)
right(120)
forward(50)
right(120)
forward(50)
right(120)

— Aufgabe 6

Vereinfachen Sie das Programm aus Aufgabe 4 mit Hilfe einer repeat-Schleife.

Ein regelmassiges n-Eck ist ein Vieleck mit n gleich langen Seiten, dessen Innenwinkel
alle gleich gross sind.

— Aufgabe 7

Schreiben Sie ein Programm, das ein regelmaéssiges 6-Eck
mit Seitenlédnge 50 zeichnet. Beachten Sie, dass die Turtle
beim Zeichnen des 6-Ecks insgesamt eine 360°-Drehung /
macht. Verwenden Sie die repeat-Schleife.

— Aufgabe 8

Schreiben Sie ein Programm, das ein regelmassiges 10-Eck mit Seitenlange 50 zeichnet.
Verwenden Sie dafiir die repeat-Schleife.

— Aufgabe 9

Schreiben Sie nun ein Programm, das ein regelméssiges 360-Eck mit Seitenlange 2
zeichnet. Welche Beobachtung machen Sie dabei?

Eigene Befehle fiir die Schildkrote definieren

Wenn wir Programme schreiben wollen, in denen wir viele Quadrate oder andere Figuren
brauchen, wird das sehr mithsam und aufwendig. Deshalb bringen wir der Schildkrote mit
def neue Befehle bei, zum Beispiel quadrat100(), der ein Quadrat mit der Seitenldnge
100 zeichnen soll. Diesen versteht die Schildkrote und wir konnen ihn beliebig oft im
Programm aufrufen bzw. verwenden:

from gturtle import x

def quadratl100():
repeat 4:
forward(100)
right(90)

makeTurtle()

Bei der Ausfithrung per p beobachten wir allerdings, dass die Schildkrote sich nicht
bewegt. Der Grund hierfiir ist, dass wir den Befehl quadrat100() zwar definiert, aber
noch nicht aufgerufen haben. Das machen wir, indem wir ihn unterhalb seiner Definition
hinzufiigen:

from gturtle import x

def quadratl00():
repeat 4:
forward(100)
right(90)

makeTurtle()
quadrat100()

Beim Aufruf des Befehls quadrat100() wird der eingeriickte Programmteil ausgefiihrt,
also ein Quadrat gezeichnet.

Wichtig

Die Klammern () gehoren zum Befehl dazu, auch wenn Sie momentan noch leer
sind.

Eigene Befehle sind besonders vorteilhaft, wenn wir diese mehrmals verwenden méchten.
Zum Beispiel ist dies ersichtlich, wenn wir quadrat100() sechsmal aufrufen:

from gturtle import x

def quadratl00():
repeat 4:
forward(100)

right(90)

makeTurtle()

repeat 6:
quadrat100()
right(60)

Wir kénnen eine beliebige Anzahl von Befehlen definieren und ausfiihren lassen.

— Aufgabe 10

Definieren Sie einen Befehl circle(), der den Kreis aus Aufgabe 9 zeichnet. Rufen
Sie diesen Befehl auf.

— Aufgabe 11

Benutzen Sie den Befehl circle() aus Aufgabe 10, um
die abgebildete Figur zu zeichnen, die aus vier Kreisen
besteht, die gegenseitig um 90° gedreht sind.

Mit der Definition neuer Befehle erweitern wir letzten Endes das Vokabular der Schildkrote,
wobei wir bei der Definition neuer Worter auf schon bekannte Worter zuriickgreifen.

Nun versteht die Schildkrote beispielsweise die neuen Befehle quadrat100() und circle().

Befehle mit Parametern

Sie haben gerade gelernt, wie Sie eigene Befehle definieren und wie Sie ihnen einen Namen
Ihrer Wahl geben, um sie dann mit diesem Namen aufzurufen und das gewtinschte Bild
vom Computer zeichnen zu lassen.

Wenn Sie nun drei Quadrate mit den Seitenldngen 50, 100 und 200 zeichnen méchten,
miissen Sie drei Befehle quadrat50(), quadrat100() und quadrat200() schreiben. Dies
ist unnotigerweise aufwéindig und repetitiv. Die Programmiersprache erleichert uns auch

dabei die Arbeit.

Betrachten Sie nun die entsprechenden drei Befehle genauer:

def quadrat50(): def quadratl100(): def quadrat200():
repeat 4: repeat 4: repeat 4:
forward(50) forward(100) forward(200)
right(90) right(90) right(90)

Die drei Befehle sind sich sehr d&hnlich und unterscheiden sich nur in den gelben Zahlen
50, 100 und 200. Diese Zahlen legen die Anzahl der Schritte fest, die die Schildkrote
nach vorne machen soll.

Wir wollen nun einen einzigen Befehl quadrat () schreiben, mit dem wir alle méglichen
Quadrate zeichnen konnen:

from gturtle import x

def quadrat(schritte):
repeat 4:
forward(schritte)
right(90)

makeTurtle()
quadrat(50)
quadrat (100)
quadrat(200)

10

Was haben wir gemacht?

1. Uberall dort, wo die Anzahl der Schritte steht, schreiben wir statt einer konkreten
Zahl einen Namen, in diesem Fall schritte.

2. Dartiber hinaus ergidnzen wir die Klammern gleich nach dem Namen des neuen Befehls
mit der Angabe schritte. Der Computer weiss nun von vornherein, dass wir die
Anzahl der Schritte spater frei wiahlen wollen.

3. Beim Aufruf des Befehls muss die Anzahl der Schritte zwingend angegeben werden.

Wenn wir, wie im obigen Programm, den Befehl quadrat(50) schreiben, setzt der
Computer im Befehl tiberall dort, wo schritte steht, die Zahl 50 ein.

50

—_——
def quadrat(schritte):
repeat 4: 50
forward(schritte)
right(90)

Anschliessend zeichnet der Computer ein Quadrat mit Seitenlédnge 50.

Wir nennen schritte einen Parameter. Im Programm oben sind 50, 100, 200 die
jeweiligen Werte des Parameters schritte. Dabei sagen wir, dass wir dem Befehl
quadrat() der Reihe nach den Wert 50, den Wert 100 und den Wert 200 iibergeben.
Wir kennen dies bereits vom Befehl forward(100), dem wir den Wert 100 iibergeben.

Aufgabe 12

Definieren Sie einen Befehl sechseck(s), der ein regelméssiges Sechseck mit Seiten-
lange s zeichnet.

Sie konnen auch Befehle mit mehreren Parametern definieren.

Aufgabe 13

Definieren Sie einen Befehl vieleck(s,n), der ein regelméssiges n-Eck mit Seiten-
lange s zeichnet.

Wir koénnen die neu von uns definierten Befehle wiederum verwenden, um neue Befehle
zu definieren:

11

— Aufgabe 14

Was zeichnet das folgende Programm? Tippen Sie es ab und iiberpriifen Sie ihre
Vermutung. Die Losung finden Sie in Aufgabe 19 auf Seite 15

from gturtle import x

def figurl(s):
repeat 3:
forward(s)
right(120)

def figur2(s):
repeat 6:
figurl(s)
right(60)

makeTurtle()
figur2(100)

Wichtig

Damit das Zeichnen schneller geht, kann man die Schildkréte mit dem Befehl
hideTurtle() verstecken. Analog kann man eine Schildkréte mit showTurtle()
wieder anzeigen lassen.

— Aufgabe 15

Die abgebildete Sternfigur besteht aus Quadraten,
welche um die linke untere Ecke rotiert wurden.

Definieren Sie einen Befehl rotquads(n), der den
Befehl quadrat(50) verwendet, um die Sternfi-
gur aus n Quadraten mit Seitenlénge 50 zu zeich-
nen.

Benutzen Sie hier auch hideTurtle().

12

— Aufgabe 16

Erweitern Sie den Befehl aus Aufgabe 15 zu rotquads(n,s), wobei s die Seiten-
lange der gezeichneten Quadrate angibt. Diese Grosse kann direkt via quad(s)
weitergegeben werden.

3 Ausblick — Animationen und
Simulationen

Wir kénnen mit TigerJython Animationen nach dem gleichen Prinzip erstellen, wie wir
sie von Zeichentrickfilmen oder Daumenkinos her kennen.

1. Eine Figur zeichnen.
2. Die Figur bzw. den Bildschirm nach ein paar Millisekunden 16schen.

3. Die Figur erneut zeichnen — zum Beispiel ganz leicht verschoben oder verdreht.

Wiederholen wir diese drei Schritte sehr oft und schnell, so erscheint das Ergebnis als
Animation.

Mit dem Befehl delay(20) wartet das Programm 20 Millisekunden (%S) bis es den
nichsten Befehl ausfithrt. Das bedeutet also, dass wir in einer Sekunde ca. 50 Bilder
zeichnen.

Mit dem Befehl clear() l6schen wir dann den Bildschirm, wobei die Schildkréte an
derselben Position und mit derselben Ausrichtung stehen bleibt.

Mit dem Befehl setPenColor("red") setzten Sie die Stiftfarbe auf rot.

13

— Aufgabe 17

Uberlegen Sie sich, was die einzelnen Programmteile genau machen und testen Sie
das Programm. Was konnte man im Programm abandern, damit der Zeiger eine
ganze Kreisrotation in ungefihr einer Sekunde schafft?

from gturtle import *

makeTurtle()
hideTurtle()
setPenColor("red")

repeat 1000:
forward(100)
back(100)
delay(20)
clear()
right(3)

Es kann sein, dass die Animationen etwas flackern oder ruckeln. Dies liesse sich beseitigen,
wiirde hier aber den zeitlichen Rahmen sprengen.

Es stehen Thnen folgende Farben zur Verfiigung:

. black l gray D white l red l orange
D yellow .l magenta .l blue .l cyan .l green

Die Schildkréte befindet sich wahrend ihrer Bewegung im ,,Stiftmodus® und zeichnet
ihre Spur. Mit penUp() wird der Stift angehoben und die Spur nicht gezeichnet. Mit
penDown () wird der Farbstift wieder auf die Ebene gesetzt.

— Aufgabe 18

Schreiben Sie eine Animation, in der ein Quadrat
quad(100) sich horizontal nach rechts bewegt.
Tipp: Benutzen Sie die Befehle penUp() wund
penDown ().

14

— Aufgabe 19

Der Befehl sechseck(s) baut aus dem Befehl dreieck(s) ein Sechseck mit der
Seitenldange s und zeichnet es (Losung zu Aufgabe 14).

Das Sechseck soll nun, wie ein Rad, um den Mittelpunkt gedreht werden. Dies
erreichen Sie, indem Sie die Schildkréte (wie in Aufgabe 17) nach jedem Schritt ein
wenig drehen und sechseck(100) erneut aufrufen.

Erganzen Sie das Programm entsprechend.

from gturtle import x

def dreieck(s):
repeat 3:
forward(s)
right(120)

def sechseck(s):
repeat 6:
dreieck(s)
right(60)

makeTurtle()
hideTurtle()

4 Awusblick — Fraktale

Dieses Kapitel richtet sich an Anwender, die schon Programmiererfahrung haben und
eine Herausforderung suchen.

Die Schildkrote zeichnet Fraktale

Ein Fraktal kann man als Objekt oder Muster bezeichnen, welches aus (unendlich vielen)
Kopien von sich selbst aufgebaut ist. Man kann Fraktale, aufgrund ihrer Selbstéhnlichkeit,
mit Hilfe von rekursiven Funktionen zeichnen.

15

Das folgende Fraktal erzeugen wir nun aber verbliiffend einfach mit Hilfe eines Zufallspro-
zesses:

— Aufgabe 20

Erstellen Sie ein Programm nach folgender Vorgabe. Hinweise zum Code konnen Sie
der Tabelle unten entnehmen.

Die folgenden drei Schritte sollen beliebig oft wiederholt werden:
1. Man wahlt einen der Punkte A, B, C' zufallig aus.

2. Der Mittelwert aus den Koordinaten des Zufall-
spunktes aus 1. und den Koordinaten der aktuellen
Position der Schildkrote bilden die Koordinaten des
neuen Punktes P,.

Beachten sie: Die Schildkrite befindet sich zu Beginn
im Punkt (0,0)

3. Die Schildkrote springt zu P, und zeichnet mit
dot(1l) einen Punkt.

Die Punkte A, B, C' koénnen Sie folgendermassen definieren:

A,B,C = (-300,-220), (300,-220),(0,280)

from random import x Modul mit Befehlen fiir Zufallszahlen

randint(0,n) liefert Zufallszahl zwischen 0 und n
setPos(x,y) setzt Schildkrote auf die Position (x,y)
dot(d) zeichnet gefiillten Kreis mit Durchmesser d

Die folgende Aufgabe ist nur fiir Anwender 16sbar, die sich mit Rekursion auskennen.

Das Ziel der Aufgabe ist es, ein weiteres Fraktal, einen sogenannten bindren Baum, zu
zeichnen. Er lasst sich auf eine einfache Grundfigur zurtickfiihren. Die Funktion tree(s)
wird jeweils im linken und rechten Ast mit einer verkiirzten Seitenliange s aufgerufen. Ab
einer bestimmten Seitenlange bricht der Prozess ab.

16

— Aufgabe 21

Erstellen Sie eine Funktion tree(s) die
den abgebildeten Baum rekursiv erzeugt.
Die Streckenldnge s wird bei jeder Stufe
um 25% verkiirzt. Der Winkel zwischen
den Asten betragt 60°.

Optional kann man die Astdicke pro Stufe
ebenfalls um 20% diinner werden lassen.

fﬁs‘z

b,

Ab b,

A A

); a

VYNV

oy
£ L Lo £ é‘ﬁ?‘mxé

é“ Ad Ad
b A A

Al b bbb 004040

Sierpinski-Dreieck (Losung der Aufgabe 20)

Befehlsiibersicht

from bib import x
makeTurtle()
forward(100), fd(100)
back(100), bk(100)
right(60), rt(60)
left(60), 1t(60)
clear()
clear("blue")
repeat 5:

penUp ()

penDown ()
setPenColor("red")
def befehl():

def befehl(param):
delay(5)
hideTurtle()
showTurtle()
randint(0,n)
setPos(x,y)

dot(d)

18

importiert alle Befehle, die in bib definiert sind

erstellt das Fenster mit der Schildkrote

100 Schritte vorwarts gehen

100 Schritte riickwarts gehen

60 Grad nach rechts drehen

60 Grad nach links drehen

16scht Bildschirm

16scht Bildschirm und setzt Hintergrundfarbe auf blau
nach : eingeriickter Programmblock wird 5 Mal wiederholt
die Schildkrote wechselt in den Wandermodus

die Schildkrote wechselt in den Zeichenmodus

wechselt die Stiftfarbe auf rot

erstellt einen Befehl mit Namen befehl

erstellt einen Befehl mit Namen befehl und Parameter param
die Schildkrote wartet 5 Zeiteinheiten

versteckt die Schildkrote

zeigt die Schildkréte wieder an

liefert Zufallszahl zwischen @ und n

setzt Schildkrote auf die Position (X,y)

zeichnet gefiillten Kreis mit Durchmesser d.

Programmieren mit Python

Informationstechnologie und Ausbildung
ETH Zurich, CAB F 15.1
Universitatstrasse 6
CH-8092 Ziirich

www.ite.ethz.ch
www.abz.inf.ethz.ch

www.ite.ethz.ch
www.abz.inf.ethz.ch

	Steuerung der Schildkröte
	Strecken zeichnen
	Drehen

	Programmablaufstrukturen
	Wiederholungen mit +repeat+
	Eigene Befehle für die Schildkröte definieren
	Befehle mit Parametern

	Ausblick – Animationen und Simulationen
	Ausblick – Fraktale
	Die Schildkröte zeichnet Fraktale

